Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
iScience ; 26(11): 108362, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37965143

RESUMO

Heterozygous mutations in the granulin (GRN) gene are a leading cause of frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Polymorphisms in TMEM106B have been associated with disease risk in GRN mutation carriers and protective TMEM106B variants associated with reduced levels of TMEM106B, suggesting that lowering TMEM106B might be therapeutic in the context of FTLD. Here, we tested the impact of full deletion and partial reduction of TMEM106B in mouse and iPSC-derived human cell models of GRN deficiency. TMEM106B deletion did not reverse transcriptomic or proteomic profiles in GRN-deficient microglia, with a few exceptions in immune signaling markers. Neither homozygous nor heterozygous Tmem106b deletion normalized disease-associated phenotypes in Grn -/-mice. Furthermore, Tmem106b reduction by antisense oligonucleotide (ASO) was poorly tolerated in Grn -/-mice. These data provide novel insight into TMEM106B and GRN function in microglia cells but do not support lowering TMEM106B levels as a viable therapeutic strategy for treating FTD-GRN.

2.
RNA ; 26(9): 1104-1117, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32393525

RESUMO

Noncoding RNA has a proven ability to direct and regulate chromatin modifications by acting as scaffolds between DNA and histone-modifying complexes. However, it is unknown if ncRNA plays any role in DNA replication and epigenome maintenance, including histone eviction and reinstallment of histone modifications after genome duplication. Isolation of nascent chromatin has identified a large number of RNA-binding proteins in addition to unknown components of the replication and epigenetic maintenance machinery. Here, we isolated and characterized long and short RNAs associated with nascent chromatin at active replication forks and track RNA composition during chromatin maturation across the cell cycle. Shortly after fork passage, GA-rich-, alpha- and TElomeric Repeat-containing RNAs (TERRA) are associated with replicated DNA. These repeat containing RNAs arise from loci undergoing replication, suggesting an interaction in cis. Post-replication during chromatin maturation, and even after mitosis in G1, the repeats remain enriched on DNA. This suggests that specific types of repeat RNAs are transcribed shortly after DNA replication and stably associate with their loci of origin throughout the cell cycle. The presented method and data enable studies of RNA interactions with replication forks and post-replicative chromatin and provide insights into how repeat RNAs and their engagement with chromatin are regulated with respect to DNA replication and across the cell cycle.


Assuntos
Replicação do DNA/genética , DNA/genética , Processamento de Proteína Pós-Traducional/genética , RNA/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Cromatina/genética , Células HeLa , Histonas/genética , Humanos
3.
Oncogene ; 38(26): 5127-5141, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30872794

RESUMO

Autophagy is a conserved degradation process that occurs in all eukaryotic cells and its dysfunction has been associated with various diseases including cancer. While a number of large-scale attempts have recently identified new molecular players in autophagy regulation, including proteins and microRNAs, little is known regarding the function of long non-coding RNAs (lncRNAs) in the regulation of this process. To identify new long non-coding RNAs with functional implications in autophagy, we performed a high-throughput RNAi screen targeting more than 600 lncRNA transcripts and monitored their effects on autophagy in MCF-7 cells. We identified 63 lncRNAs that affected GFP-LC3B puncta numbers significantly. We validated the strongest hit, the lncRNA DRAIC previously shown to impact cell proliferation, and revealed a novel role for this lncRNA in the regulation of autophagic flux. Interestingly, we find DRAIC's pro-proliferative effects to be autophagy-independent. This study serves as a valuable resource for researchers from both the lncRNA and autophagy fields as it advances the current understanding of autophagy regulation by non-coding RNAs.


Assuntos
Autofagia/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células MCF-7 , Análise em Microsséries , Interferência de RNA/fisiologia , Análise de Sequência de RNA
4.
Nat Commun ; 7: 13875, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004750

RESUMO

We currently have limited knowledge of the involvement of long non-coding RNAs (lncRNAs) in normal cellular processes and pathologies. Here, we identify and characterize SNHG5 as a stable cytoplasmic lncRNA with up-regulated expression in colorectal cancer. Depletion of SNHG5 induces cell cycle arrest and apoptosis in vitro and limits tumour outgrowth in vivo, whereas SNHG5 overexpression counteracts oxaliplatin-induced apoptosis. Using an unbiased approach, we identify 121 transcript sites interacting with SNHG5 in the cytoplasm. Importantly, knockdown of key SNHG5 target transcripts, including SPATS2, induces apoptosis and thus mimics the effect seen following SNHG5 depletion. Mechanistically, we suggest that SNHG5 stabilizes the target transcripts by blocking their degradation by STAU1. Accordingly, depletion of STAU1 rescues the apoptosis induced after SNHG5 knockdown. Hence, we characterize SNHG5 as a lncRNA promoting tumour cell survival in colorectal cancer and delineate a novel mechanism in which a cytoplasmic lncRNA functions through blocking the action of STAU1.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas do Citoesqueleto/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Apoptose , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Neoplasias Colorretais/genética , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Técnicas de Silenciamento de Genes , Células HCT116 , Células HT29 , Humanos , Proteínas/antagonistas & inibidores , Proteínas/genética , Proteínas/metabolismo , Estabilidade de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...